II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

APPLIED THERMODYNAMICS (MECHANICAL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.		
					Marks		
		UNIT-I					
1	a)	Discuss the classifications of IC Engines.	L2	CO1	7 M		
	b)	Explain the difference between two-stroke	L2	CO1	7 M		
		and four-stroke engines.					
	OR						
2	The	e following data was recorded during the	L3	CO2	14 M		
	testing of a four-stroke cycle gas engine. Area of						
	indicator diagram=900 mm ² ; Length of indicator						
	diagram = 70 mm; spring scale = 0.3 bar/mm;						
	Diameter of piston = 200 mm; Length of stroke						
	= 250 mm; Speed = 300 rpm. Determine:						
	i) Indicated mean effective pressure						
	ii) Indicated power.						

PVP 20

Max. Marks: 70

	_	UNIT-II			
3	a)	Discuss in detail about the combustion process in a SI engine with suitable diagrams.	L2	CO1	7 M
	b)	Differentiate the normal combustion and abnormal combustion for SI engines.	L2	CO1	7 M
		OR			
4	-	plain different variables affecting the delay iod and knocking in CI engines.	L2	CO1	14 M
		UNIT-III			
5	is d exp Det wor	a Rankine cycle, the steam at inlet to turbine lry and saturated at a pressure of 30 bar and bands isentropically to a pressure of 0.25 bar. termine: a) The turbine work b) The pump rk c) Rankine efficiency d) Condenser heat w e) Dryness fraction at the end of expansion.	L3	CO3	14 M
		OR			
6	32 ther bar exp the of 2 pres	urbine is supplied with steam at a pressure of bar and temperature of 410°C. The steam n expands isentropically to a pressure of 0.08 . Find the dryness fraction at the end of bansion and thermal efficiency of the cycle. If steam is reheated at 5.5 bar to a temperature 395°C and then expanded isentropically to a ssure of 0.08 bar, what will be the dryness ction and thermal efficiency of the cycle?	L3	CO3	14 M

		UNIT-IV						
7	a)	Dry saturated steam at 2.8 bar is expanded	L3	CO4	10 M			
		through a convergent nozzle to 1.7 bar. The						
		exit area is 3 cm^2 . Calculate the exit velocity						
		and mass flow rate for, i) Isentropic						
		expansion ii) supersaturated flow.						
	b)	List out some applications of steam nozzles.	L2	CO4	4 M			
	OR							
8	Cla	ssify different types of condensers, and	L2	CO4	14 M			
	exp	lain in detail the working of jet condensers.						
		UNIT-V						
9	a)	Differentiate the open and closed-cycle gas	L2	CO4	7 M			
		turbines.						
	b)	Explain how the intercooling method will	L4	CO4	7 M			
		increase the gas turbine efficiency.						
OR								
10	In a	an air standard regenerative gas turbine cycle	L3	CO4	14 M			
	the	pressure ratio is 5. Air enters the compressor						
	at 1 bar, 300 K and leaves at 490 K. The							
	maximum temperature in the cycle is 1000 K.							
		culate the cycle efficiency, given that the ciency of the regenerator and the efficiency						
	of the turbine are each 80%. Assume for air the							
	ratio of specific heats as 1.4. Also show the							
	cycle on a T-S diagram.							